Counting dense connected hypergraphs via the probabilistic method

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting Connected Graphs and Hypergraphs via the Probabilistic Method

It is exponentially unlikely that a sparse random graph or hypergraph is connected, but such graphs occur commonly as the giant components of larger random graphs. This simple observation allows us to estimate the number of connected graphs, and more generally the number of connected d-uniform hypergraphs, on n vertices with m = O(n) edges. We also estimate the probability that a binomial rando...

متن کامل

Counting in Hypergraphs via Regularity

We develop a theory of regularity inheritance in 3-uniform hypergraphs. As a simple consequence we deduce a strengthening of a counting lemma of Frankl and Rödl. We believe that the approach is sufficiently flexible and general to permit extensions of our results in the direction of a hypergraph blow-up lemma.

متن کامل

Counting in hypergraphs via regularity inheritance

We develop a theory of regularity inheritance in 3-uniform hypergraphs. As a simple consequence we deduce a strengthening of a counting lemma of Frankl and Rödl. We believe that the approach is sufficiently flexible and general to permit extensions of our results in the direction of a hypergraph blow-up lemma.

متن کامل

Counting and packing Hamilton `-cycles in dense hypergraphs

A k-uniform hypergraph H contains a Hamilton `-cycle, if there is a cyclic ordering of the vertices of H such that the edges of the cycle are segments of length k in this ordering and any two consecutive edges fi, fi+1 share exactly ` vertices. We consider problems about packing and counting Hamilton `-cycles in hypergraphs of large minimum degree. Given a hypergraph H, for a d-subset A ⊆ V (H)...

متن کامل

Approximate Probabilistic Inference via Word-Level Counting

Probabilistic inference on large and uncertain data sets is increasingly being used in a wide range of applications. It is well-known that probabilistic inference is polynomially inter-reducible to model counting (Roth 1996). In a recent line of work, it has been shown (Chakraborty, Meel, and Vardi 2013; Chakraborty et al. 2014; Ermon et al. 2014; Ermon et al. 2013) that one can strike a fine b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Random Structures & Algorithms

سال: 2018

ISSN: 1042-9832,1098-2418

DOI: 10.1002/rsa.20762